21 research outputs found

    An alternative approach to efficient simulation of micro/nanoscale phonon transport

    Full text link
    Starting from the recently proposed energy-based deviational formulation for solving the Boltzmann equation [J.-P. Peraud and N. G. Hadjiconstantinou, Phys. Rev. B 84, 2011], which provides significant computational speedup compared to standard Monte Carlo methods for small deviations from equilibrium, we show that additional computational benefits are possible in the limit that the governing equation can be linearized. The proposed method exploits the observation that under linearized conditions (small temperature differences) the trajectories of individual deviational particles can be decoupled and thus simulated independently; this leads to a particularly simple and efficient algorithm for simulating steady and transient problems in arbitrary three-dimensional geometries, without introducing any additional approximation.Comment: 4 pages, 2 figure

    Reconstruction of the phonon relaxation times using solutions of the Boltzmann transport equation

    Get PDF
    We present a method for reconstructing the phonon relaxation time distribution τ[subscript ω]=τ(ω) (including polarization) in a material from thermal spectroscopy data. The distinguishing feature of this approach is that it does not make use of the effective thermal conductivity concept and associated approximations. The reconstruction is posed as an optimization problem in which the relaxation times τ[subscript ω]=τ(ω) are determined by minimizing the discrepancy between the experimental relaxation traces and solutions of the Boltzmann transport equation for the same problem. The latter may be analytical, in which case the procedure is very efficient, or numerical. The proposed method is illustrated using Monte Carlo solutions of thermal grating relaxation as synthetic experimental data. The reconstruction is shown to agree very well with the relaxation times used to generate the synthetic Monte Carlo data and remains robust in the presence of uncertainty (noise).United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Awards DE-SC0001299 and DE-FG02-09ER46577

    Low variance methods for Monte Carlo simulation of phonon transport

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-97).Computational studies in kinetic transport are of great use in micro and nanotechnologies. In this work, we focus on Monte Carlo methods for phonon transport, intended for studies in microscale heat transfer. After reviewing the theory of phonons, we use scientific literature to write a Monte Carlo code solving the Boltzmann Transport Equation for phonons. As a first improvement to the particle method presented, we choose to use the Boltzmann Equation in terms of energy as a more convenient and accurate formulation to develop such a code. Then, we use the concept of control variates in order to introduce the notion of deviational particles. Noticing that a thermalized system at equilibrium is inherently a solution of the Boltzmann Transport Equation, we take advantage of this deterministic piece of information: we only simulate the deviation from a nearby equilibrium, which removes a great part of the statistical uncertainty. Doing so, the standard deviation of the result that we obtain is proportional to the deviation from equilibrium. In other words, we are able to simulate signals of arbitrarily low amplitude with no additional computational cost. After exploring two other variants based on the idea of control variates, we validate our code on a few theoretical results derived from the Boltzmann equation. Finally, we present a few applications of the methods.by Jean-Philippe M. PĂ©raud.S.M

    Fluctuation-enhanced electric conductivity in electrolyte solutions

    Full text link
    In this letter we analyze the effects of an externally applied electric field on thermal fluctuations for a fluid containing charged species. We show in particular that the fluctuating Poisson-Nernst-Planck equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation, result in enhanced charge transport. Although this transport is advective in nature, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity. We calculate the renormalized electric conductivity by deriving and integrating the structure factor coefficients of the fluctuating quantities and show that the renormalized electric conductivity and diffusion coefficients are consistent although they originate from different noise terms. In addition, the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, and provides a quantitative theory that predicts a non-zero cross-diffusion Maxwell-Stefan coefficient that agrees well with experimental measurements. Finally, we show that strong applied electric fields result in anisotropically enhanced velocity fluctuations and reduced fluctuations of salt concentrations.Comment: 12 pages, 1 figur

    Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations

    Full text link
    We present a new Monte Carlo method for obtaining solutions of the Boltzmann equation for describing phonon transport in micro and nanoscale devices. The proposed method can resolve arbitrarily small signals (e.g. temperature differences) at small constant cost and thus represents a considerable improvement compared to traditional Monte Carlo methods whose cost increases quadratically with decreasing signal. This is achieved via a control-variate variance reduction formulation in which the stochastic particle description only solves for the deviation from a nearby equilibrium, while the latter is described analytically. We also show that simulating an energy-based Boltzmann equation results in an algorithm that lends itself naturally to exact energy conservation thereby considerably improving the simulation fidelity. Simulations using the proposed method are used to investigate the effect of porosity on the effective thermal conductivity of silicon. We also present simulations of a recently developed thermal conductivity spectroscopy process. The latter simulations demonstrate how the computational gains introduced by the proposed method enable the simulation of otherwise intractable multiscale phenomena

    Thermal transport in nanoporous holey silicon membranes investigated with optically induced transient thermal gratings

    Get PDF
    In this study, we use transient thermal gratings—a non-contact, laser-based thermal metrology technique with intrinsically high accuracy—to investigate room-temperature phonon-mediated thermal transport in two nanoporous holey silicon membranes with limiting dimensions of 120 nm and 250 nm, respectively. We compare the experimental results with ab initio calculations of phonon-mediated thermal transport according to the phonon Boltzmann transport equation (BTE) using two different computational techniques. We find that the calculations conducted within the Casimir framework, i.e., based on the BTE with the bulk phonon dispersion and diffuse scattering from surfaces, are in quantitative agreement with the experimental data and thus conclude that this framework is adequate for describing phonon-mediated thermal transport in silicon nanostructures with feature sizes of the order of 100 nm
    corecore